We study a lossy source coding problem with secrecy constraints in which a remote information source should be transmitted to a single destination via multiple agents in the presence of a passive eavesdropper. The agents observe noisy versions of the source and independently encode and transmit their observations to the destination via noiseless rate-limited links. The destination should estimate the remote source based on the information received from the agents within a certain mean distortion threshold. The eavesdropper, with access to side information correlated to the source, is able to listen in on one of the links from the agents to the destination in order to obtain as much informationas possible about the source.
This problem can be viewed as the so-called CEO problem with additional secrecy constraints. We establish inner and outer bounds on the rate-distortion-equivocation region of this problem. We also obtain the region in special cases where the bounds are tight. Furthermore, we study the quadratic Gaussian case and provide the optimal rate-distortion-equivocation region when the eavesdropper has no side information and an achievable region for a more general setup with side information at the eavesdropper.