In this article, the issue of guarding multi-agent systems against a sequence of intruder attacks through mobile heterogeneous guards (guards with different ranges) is discussed. The article makes use of graph theoretic abstractions of such systems in which agents are the nodes of a graph and edges represent interconnections between agents. Guards represent specialized mobile agents on specific nodes with capabilities to successfully detect and respond to an attack within their guarding range. Using this abstraction, the article addresses the problem in the context of eternal security problem in graphs.
Eternal security refers to securing all the nodes in a graph against an infinite sequence of intruder attacks by a certain minimum number of guards. This paper makes use of heterogeneous guards and addresses all the components of the eternal security problem including the number of guards, their deployment and movement strategies. In the proposed solution, a graph is decomposed into clusters and a guard with appropriate range is then assigned to each cluster. These guards ensure that all nodes within their corresponding cluster are being protected at all times, thereby achieving the eternal security in the graph.